Permutation groups with metrizable universal minimal flow

Andy Zucker Carnegie Mellon University

June 30, 2015 When Topological Dynamics Meets Model Theory Marseille

→ 3 → 4 3

In this talk, we are interested in the dynamics of closed subgroups of S_{∞} , which we endow with the pointwise convergence topology.

4 B 6 4 B

In this talk, we are interested in the dynamics of closed subgroups of S_{∞} , which we endow with the pointwise convergence topology.

Recall that the closed subgroups of S_{∞} are exactly the automorphism groups of relational *Fraïssé structures*.

In this talk, we are interested in the dynamics of closed subgroups of S_{∞} , which we endow with the pointwise convergence topology.

Recall that the closed subgroups of S_{∞} are exactly the automorphism groups of relational *Fraïssé structures*.

If **K** is a Fraïssé structure, then $\mathcal{K} = \operatorname{Age}(\mathbf{K})$ is a Fraïssé class. Conversely, if \mathcal{K} is a Fraïssé class, there is up to isomorphism a unique Fraïssé structure $\mathbf{K} = \operatorname{Flim}(\mathcal{K})$ with $\operatorname{Age}(\mathbf{K}) = \mathcal{K}$. For G a topological group, a G-flow is a compact Hausdorff space X along with a continuous right action $\tau : X \times G \rightarrow X$.

□ ▶ < □ ▶ < □</p>

For G a topological group, a G-flow is a compact Hausdorff space X along with a continuous right action $\tau : X \times G \rightarrow X$.

A *G*-flow *X* is minimal if every orbit is dense, and *X* is universal if for any minimal *G*-flow *Y*, there is a map of *G*-flows $\pi : X \to Y$.

For G a topological group, a G-flow is a compact Hausdorff space X along with a continuous right action $\tau : X \times G \rightarrow X$.

A G-flow X is minimal if every orbit is dense, and X is universal if for any minimal G-flow Y, there is a map of G-flows $\pi: X \to Y$.

It is a fact that for any topological group G, there is up to G-flow isomorphism a unique flow M(G) which is minimal and universal. M(G) is called the *universal minimal flow*.

For **K** a Fraïssé structure, there is a fascinating interplay between the dynamical properties of $G = Aut(\mathbf{K})$ and the combinatorics of $\mathcal{K} = Age(\mathbf{K})$.

A 10

A B > A B >

For **K** a Fraïssé structure, there is a fascinating interplay between the dynamical properties of $G = Aut(\mathbf{K})$ and the combinatorics of $\mathcal{K} = Age(\mathbf{K})$.

Let \mathcal{K} be a class of finite structures, and let $\mathbf{A} \in \mathcal{K}$. We say that \mathbf{A} is a *Ramsey object* if for every $\mathbf{B} \in \mathcal{K}$ with $\mathbf{B} \ge \mathbf{A}$ and every $k \in \mathbb{N}$, there is a $\mathbf{C} \in \mathcal{K}$ with $\mathbf{C} \ge \mathbf{B}$ for which we have

 $\mathbf{C} \hookrightarrow (\mathbf{B})^{\mathbf{A}}_k$

For **K** a Fraïssé structure, there is a fascinating interplay between the dynamical properties of $G = Aut(\mathbf{K})$ and the combinatorics of $\mathcal{K} = Age(\mathbf{K})$.

Let \mathcal{K} be a class of finite structures, and let $\mathbf{A} \in \mathcal{K}$. We say that \mathbf{A} is a *Ramsey object* if for every $\mathbf{B} \in \mathcal{K}$ with $\mathbf{B} \ge \mathbf{A}$ and every $k \in \mathbb{N}$, there is a $\mathbf{C} \in \mathcal{K}$ with $\mathbf{C} \ge \mathbf{B}$ for which we have

$$\mathbf{C} \hookrightarrow (\mathbf{B})^{\mathbf{A}}_k$$

This says that for every coloring $\gamma : \text{Emb}(\mathbf{A}, \mathbf{C}) \to [k]$, there is $f \in \text{Emb}(\mathbf{B}, \mathbf{C})$ so that $|\gamma(f \circ \text{Emb}(\mathbf{A}, \mathbf{B}))| = 1$.

伺 ト イ ヨ ト イ ヨ ト

For **K** a Fraïssé structure, there is a fascinating interplay between the dynamical properties of $G = Aut(\mathbf{K})$ and the combinatorics of $\mathcal{K} = Age(\mathbf{K})$.

Let \mathcal{K} be a class of finite structures, and let $\mathbf{A} \in \mathcal{K}$. We say that \mathbf{A} is a *Ramsey object* if for every $\mathbf{B} \in \mathcal{K}$ with $\mathbf{B} \ge \mathbf{A}$ and every $k \in \mathbb{N}$, there is a $\mathbf{C} \in \mathcal{K}$ with $\mathbf{C} \ge \mathbf{B}$ for which we have

$$\mathbf{C} \hookrightarrow (\mathbf{B})^{\mathbf{A}}_k$$

This says that for every coloring $\gamma : \text{Emb}(\mathbf{A}, \mathbf{C}) \to [k]$, there is $f \in \text{Emb}(\mathbf{B}, \mathbf{C})$ so that $|\gamma(f \circ \text{Emb}(\mathbf{A}, \mathbf{B}))| = 1$.

We say that \mathcal{K} has the *Ramsey Property* if each $\mathbf{A} \in \mathcal{K}$ is a Ramsey object. We can now state the following theorem.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Kechris-Pestov-Todorčević)

Let **K** be a Fraïssé structure, $\mathcal{K} = Age(\mathbf{K})$, and $G = Aut(\mathbf{K})$. Then \mathcal{K} has the Ramsey Property iff G is extremely amenable (i.e. M(G) is a singleton).

同 ト イ ヨ ト イ ヨ ト

Theorem (Kechris-Pestov-Todorčević)

Let **K** be a Fraïssé structure, $\mathcal{K} = Age(\mathbf{K})$, and $G = Aut(\mathbf{K})$. Then \mathcal{K} has the Ramsey Property iff G is extremely amenable (i.e. M(G) is a singleton).

Problem

Is there a similar combinatorial characterization of when M(G) is metrizable?

伺 ト く ヨ ト く ヨ ト

Theorem (Kechris-Pestov-Todorčević)

Let **K** be a Fraïssé structure, $\mathcal{K} = Age(\mathbf{K})$, and $G = Aut(\mathbf{K})$. Then \mathcal{K} has the Ramsey Property iff G is extremely amenable (i.e. M(G) is a singleton).

Problem

Is there a similar combinatorial characterization of when M(G) is metrizable?

Yes!

伺 ト く ヨ ト く ヨ ト

Let \mathcal{K} be a class of finite structures, and let $\mathbf{A} \in \mathcal{K}$. We say that \mathbf{A} has *finite Ramsey degree* if there is $\ell \in \mathbb{N}$

/□ ▶ < 글 ▶ < 글

Let \mathcal{K} be a class of finite structures, and let $\mathbf{A} \in \mathcal{K}$. We say that \mathbf{A} has *finite Ramsey degree* if there is $\ell \in \mathbb{N}$ so that for every $\mathbf{B} \in \mathcal{K}$ with $\mathbf{B} \ge \mathbf{A}$ and every $k \ge \ell$,

- - E - - E

Let \mathcal{K} be a class of finite structures, and let $\mathbf{A} \in \mathcal{K}$. We say that \mathbf{A} has *finite Ramsey degree* if there is $\ell \in \mathbb{N}$ so that for every $\mathbf{B} \in \mathcal{K}$ with $\mathbf{B} \ge \mathbf{A}$ and every $k \ge \ell$, there is $\mathbf{C} \in \mathcal{K}$ with $\mathbf{C} \ge \mathbf{B}$ for which we have

 $\mathsf{C} \hookrightarrow (\mathsf{B})^{\mathsf{A}}_{k,\ell}$

伺 ト イ ヨ ト イ ヨ

Let \mathcal{K} be a class of finite structures, and let $\mathbf{A} \in \mathcal{K}$. We say that \mathbf{A} has *finite Ramsey degree* if there is $\ell \in \mathbb{N}$ so that for every $\mathbf{B} \in \mathcal{K}$ with $\mathbf{B} \ge \mathbf{A}$ and every $k \ge \ell$, there is $\mathbf{C} \in \mathcal{K}$ with $\mathbf{C} \ge \mathbf{B}$ for which we have

$\mathbf{C} \hookrightarrow (\mathbf{B})_{k,\ell}^{\mathbf{A}}$

This says that for every $\gamma : \text{Emb}(\mathbf{A}, \mathbf{C}) \to [k]$, there is $f \in \text{Emb}(\mathbf{B}, \mathbf{C})$ so that $|\gamma(f \circ \text{Emb}(\mathbf{A}, \mathbf{B}))| \leq \ell$.

Let \mathcal{K} be a class of finite structures, and let $\mathbf{A} \in \mathcal{K}$. We say that \mathbf{A} has *finite Ramsey degree* if there is $\ell \in \mathbb{N}$ so that for every $\mathbf{B} \in \mathcal{K}$ with $\mathbf{B} \ge \mathbf{A}$ and every $k \ge \ell$, there is $\mathbf{C} \in \mathcal{K}$ with $\mathbf{C} \ge \mathbf{B}$ for which we have

 $\mathbf{C} \hookrightarrow (\mathbf{B})_{k,\ell}^{\mathbf{A}}$

This says that for every $\gamma : \operatorname{Emb}(\mathbf{A}, \mathbf{C}) \to [k]$, there is $f \in \operatorname{Emb}(\mathbf{B}, \mathbf{C})$ so that $|\gamma(f \circ \operatorname{Emb}(\mathbf{A}, \mathbf{B}))| \leq \ell$.

Theorem (Z.)

Let **K** be a Fraïssé structure, $\mathcal{K} = Age(\mathbf{K})$, and $G = Aut(\mathbf{K})$. Then M(G) is metrizable iff each $\mathbf{A} \in \mathcal{K}$ has finite Ramsey degree.

・ 同 ト ・ ヨ ト ・ ヨ ト

Image: Image:

 For N the infinite set, M(Aut(N)) = M(S_∞) is the space of linear orderings of N.

4 3 6 4 3

- For N the infinite set, M(Aut(N)) = M(S_∞) is the space of linear orderings of N.
- For V_∞ the infinite dimensional vector space over F_q, M(Aut(V_∞)) is the space of lex. orderings of V_∞.

伺 ト イ ヨ ト イ ヨ ト

- For N the infinite set, M(Aut(N)) = M(S_∞) is the space of linear orderings of N.
- For \mathbf{V}_{∞} the infinite dimensional vector space over F_q , $M(\operatorname{Aut}(\mathbf{V}_{\infty}))$ is the space of lex. orderings of \mathbf{V}_{∞} .

Sometimes we need more than just a linear order (Nguyen Van Thé).

伺 ト イ ヨ ト イ ヨ ト

- For N the infinite set, M(Aut(N)) = M(S_∞) is the space of linear orderings of N.
- For V_∞ the infinite dimensional vector space over F_q, M(Aut(V_∞)) is the space of lex. orderings of V_∞.

Sometimes we need more than just a linear order (Nguyen Van Thé).

• For the tournament **S**(2), *M*(Aut(**S**(2))) is the space of admissible labelled 2-part partitions of **S**(2).

くほし くほし くほし

The most general set-up for KPT-correspondence is as follows:

→ 3 → < 3</p>

The most general set-up for KPT-correspondence is as follows:

Let \mathcal{K} be a Fraïssé class in a language L with limit \mathbf{K} . Let \mathcal{K}^* be a Fraïssé class in $L^* = L \cup \{S_i : i \in I\}$, where the S_i are countably many new relation symbols of arity n(i), with limit \mathbf{K}^* and with the property that $\mathbf{K}^*|_L = \mathbf{K}$ (i.e. \mathcal{K}^* is a *reasonable* expansion of \mathcal{K}).

The most general set-up for KPT-correspondence is as follows:

Let \mathcal{K} be a Fraïssé class in a language L with limit \mathbf{K} . Let \mathcal{K}^* be a Fraïssé class in $L^* = L \cup \{S_i : i \in I\}$, where the S_i are countably many new relation symbols of arity n(i), with limit \mathbf{K}^* and with the property that $\mathbf{K}^*|_L = \mathbf{K}$ (i.e. \mathcal{K}^* is a *reasonable* expansion of \mathcal{K}).

The topological space $X_{\mathcal{K}^*}$ is the collection of all structures of the form $\langle \mathbf{K}, \vec{S}^{\mathbf{K}} \rangle$. If $\mathbf{A} \subseteq \mathbf{K}$, $\mathbf{A} \in \mathcal{K}$, and $\mathbf{A}^* \in \mathcal{K}^*$ with $\mathbf{A}^*|_L = \mathbf{A}$, then this determines a basic open neighborhood of $X_{\mathcal{K}^*}$ via

$$\mathcal{N}(\mathbf{A}^*) = \{ ec{S}^{\mathbf{K}} \in X_{\mathcal{K}^*} : \langle \mathbf{A}, ec{S}^{\mathbf{K}} |_{\mathbf{A}}
angle = \mathbf{A}^* \}$$

 $X_{\mathcal{K}^*}$ is compact iff for each $\mathbf{A} \in \mathcal{K}$, $\{\mathbf{A}^* \in \mathcal{K}^* : \mathbf{A}^*|_L = \mathbf{A}\}$ is finite (i.e. \mathcal{K}^* is *precompact*). $G = \operatorname{Aut}(\mathbf{K})$ acts on $X_{\mathcal{K}^*}$ via the *logic* action, i.e. for $\mathbf{K}' \in X_{\mathcal{K}^*}$, $g \in G$, and each $i \in I$, we have

$$S_{i}^{\mathbf{K}' \cdot g}(x_{1}, ..., x_{n(i)}) = S_{i}^{\mathbf{K}'}(g(x_{1}), ..., g(x_{n(i)}))$$

 $X_{\mathcal{K}^*}$ is compact iff for each $\mathbf{A} \in \mathcal{K}$, $\{\mathbf{A}^* \in \mathcal{K}^* : \mathbf{A}^*|_L = \mathbf{A}\}$ is finite (i.e. \mathcal{K}^* is *precompact*). $G = \operatorname{Aut}(\mathbf{K})$ acts on $X_{\mathcal{K}^*}$ via the *logic action*, i.e. for $\mathbf{K}' \in X_{\mathcal{K}^*}$, $g \in G$, and each $i \in I$, we have

$$S_{i}^{\mathbf{K}'\cdot g}(x_{1},...,x_{n(i)}) = S_{i}^{\mathbf{K}'}(g(x_{1}),...,g(x_{n(i)}))$$

We say that \mathcal{K}^* has the *Expansion Property* if for any $\mathbf{A} \in \mathcal{K}$, there is $\mathbf{B} \in \mathcal{K}$ with $\mathbf{A} \leq \mathbf{B}$ so that for any expansions \mathbf{A}^* , \mathbf{B}^* of \mathbf{A} and \mathbf{B} respectively, we have $\mathbf{A}^* \leq \mathbf{B}^*$.

 $X_{\mathcal{K}^*}$ is compact iff for each $\mathbf{A} \in \mathcal{K}$, $\{\mathbf{A}^* \in \mathcal{K}^* : \mathbf{A}^*|_L = \mathbf{A}\}$ is finite (i.e. \mathcal{K}^* is *precompact*). $G = \operatorname{Aut}(\mathbf{K})$ acts on $X_{\mathcal{K}^*}$ via the *logic action*, i.e. for $\mathbf{K}' \in X_{\mathcal{K}^*}$, $g \in G$, and each $i \in I$, we have

$$S_{i}^{\mathbf{K}' \cdot g}(x_{1}, ..., x_{n(i)}) = S_{i}^{\mathbf{K}'}(g(x_{1}), ..., g(x_{n(i)}))$$

We say that \mathcal{K}^* has the *Expansion Property* if for any $\mathbf{A} \in \mathcal{K}$, there is $\mathbf{B} \in \mathcal{K}$ with $\mathbf{A} \leq \mathbf{B}$ so that for any expansions \mathbf{A}^* , \mathbf{B}^* of \mathbf{A} and \mathbf{B} respectively, we have $\mathbf{A}^* \leq \mathbf{B}^*$.

Theorem (Kechris-Pestov-Todorčević, Nguyen Van Thé)

Let **K** be a Fraïssé structure, $\mathcal{K} = Age(\mathbf{K})$, and $G = Aut(\mathbf{K})$. Let \mathcal{K}^* be a reasonable, precompact Fraïssé expansion of \mathcal{K} . Then $M(G) \cong X_{\mathcal{K}^*}$ iff \mathcal{K}^* has the ExpP and the RP.

・ロト ・得ト ・ヨト ・ヨト

Problem

If G is a closed subgroup of S_{∞} with M(G) metrizable, can M(G) be described using a logic action as above?

同 ト イ ヨ ト イ ヨ ト

Problem

If G is a closed subgroup of S_{∞} with M(G) metrizable, can M(G) be described using a logic action as above?

Yes!

Theorem (Z.)

Let **K** be a Fraissé structure, $\mathcal{K} = Age(\mathbf{K})$, and $G = Aut(\mathbf{K})$. Suppose M(G) is metrizable. Then \mathcal{K} admits a reasonable, precompact Fraissé expansion class \mathcal{K}^* with the Expansion Property and the Ramsey Property.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

This has the nice consequence of solving the Generic Point Problem for closed subgroups of S_{∞} .

/□ ▶ < 글 ▶ < 글

This has the nice consequence of solving the Generic Point Problem for closed subgroups of S_{∞} .

If G is a topological group and X is a minimal G-flow, then $x \in X$ is a generic point if $x \cdot G$ is comeager. G is said to have the Generic Point Property if each minimal flow has a generic point. This holds iff M(G) has a generic point.

This has the nice consequence of solving the Generic Point Problem for closed subgroups of S_{∞} .

If G is a topological group and X is a minimal G-flow, then $x \in X$ is a generic point if $x \cdot G$ is comeager. G is said to have the Generic Point Property if each minimal flow has a generic point. This holds iff M(G) has a generic point.

If G, \mathcal{K} , and **K** are as always and \mathcal{K}^* is a reasonable Fraïssé expansion of \mathcal{K} with the Expansion Property, then the orbit of $\mathbf{K}^* = \operatorname{Flim}(\mathcal{K}^*)$ is generic.

This has the nice consequence of solving the Generic Point Problem for closed subgroups of S_{∞} .

If G is a topological group and X is a minimal G-flow, then $x \in X$ is a generic point if $x \cdot G$ is comeager. G is said to have the Generic Point Property if each minimal flow has a generic point. This holds iff M(G) has a generic point.

If G, \mathcal{K} , and **K** are as always and \mathcal{K}^* is a reasonable Fraïssé expansion of \mathcal{K} with the Expansion Property, then the orbit of $\mathbf{K}^* = \operatorname{Flim}(\mathcal{K}^*)$ is generic.

Corollary (Z.)

Let G be a closed subgroup of S_{∞} , and suppose M(G) is metrizable. Then G has the Generic Point Property.

・ 戸 ト ・ ヨ ト ・ ヨ
However, the Generic Point Problem as originally asked is still open.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

However, the Generic Point Problem as originally asked is still open.

Problem (Angel, Kechris, Lyons)

Let G be a Polish group, and suppose M(G) is metrizable. Then does M(G) have the Generic Point Property?

伺 ト イヨト イヨト

The first ingredient in the proof is a different way of thinking about the Ramsey Property.

Image: A = 1

The first ingredient in the proof is a different way of thinking about the Ramsey Property.

Let **D** be a countably infinite relational structure with $\mathcal{D} = \operatorname{Age}(\mathbf{D})$, and let $\mathbf{A} \in \mathcal{D}$. We say $\mathcal{T} \subseteq \operatorname{Emb}(\mathbf{A}, \mathbf{D})$ is *thick* if for every $\mathbf{B} \in \mathbf{D}$, there is $f \in \operatorname{Emb}(\mathbf{B}, \mathbf{D})$ with $f \circ \operatorname{Emb}(\mathbf{A}, \mathbf{B}) \subseteq \mathcal{T}$.

The first ingredient in the proof is a different way of thinking about the Ramsey Property.

Let **D** be a countably infinite relational structure with $\mathcal{D} = \operatorname{Age}(\mathbf{D})$, and let $\mathbf{A} \in \mathcal{D}$. We say $\mathcal{T} \subseteq \operatorname{Emb}(\mathbf{A}, \mathbf{D})$ is *thick* if for every $\mathbf{B} \in \mathbf{D}$, there is $f \in \operatorname{Emb}(\mathbf{B}, \mathbf{D})$ with $f \circ \operatorname{Emb}(\mathbf{A}, \mathbf{B}) \subseteq \mathcal{T}$.

We consider partial colorings $\gamma : \text{Emb}(\mathbf{A}, \mathbf{D}) \to [k]$; we say γ is *full* if dom $(\gamma) = \text{Emb}(\mathbf{A}, \mathbf{D})$, and we say γ is *large* if dom (γ) is thick.

伺 ト イヨト イヨト

Proposition

Suppose **D** is a countably infinite relational structure, $\mathcal{D} = \operatorname{Age}(\mathbf{D})$, and \mathcal{C} is cofinal in \mathcal{D} . Let $\mathbf{A} \in \mathcal{C}$ and fix any $k \ge 2$. Then the following are equivalent:

- A is a Ramsey object in C,
- **2** A is a Ramsey object in \mathcal{D} ,
- Sor any full k-coloring γ of Emb(A, D), there is some γ_i which is thick,
- Sor any large k-coloring γ of Emb(A, D), there is some γ_i which is thick.

伺 ト く ヨ ト く ヨ ト

There is a similar characterization for Ramsey degrees:

・ 同 ト ・ ヨ ト ・ ヨ ト

There is a similar characterization for Ramsey degrees:

Proposition

Suppose **D** is a countably infinite relational structure, $\mathcal{D} = \operatorname{Age}(\mathbf{D})$, and \mathcal{C} is cofinal in \mathcal{D} . Let $\mathbf{A} \in \mathcal{C}$ and fix any r > k. Then the following are equivalent:

- **1** A has Ramsey degree $t \leq k$ in C,
- **2** A has Ramsey degree $t \leq k$ in \mathcal{D} ,
- Any full r-coloring of Emb(A, D) has some subset of k colors which form a thick subset,
- Any large r-coloring of Emb(A, D) has some subset of k colors which form a thick subset.

伺 ト く ヨ ト く ヨ ト

・ 同 ト ・ ヨ ト ・ ヨ ト

-

With **D**, \mathcal{D} as above and $\mathbf{A} \in \mathcal{D}$, we say that $S \subseteq \text{Emb}(\mathbf{A}, \mathbf{D})$ is *syndetic* if $\text{Emb}(\mathbf{A}, \mathbf{D}) \setminus S$ is not thick.

伺 ト イ ヨ ト イ ヨ ト

With **D**, \mathcal{D} as above and $\mathbf{A} \in \mathcal{D}$, we say that $S \subseteq \text{Emb}(\mathbf{A}, \mathbf{D})$ is *syndetic* if $\text{Emb}(\mathbf{A}, \mathbf{D}) \setminus S$ is not thick.

If γ is a full k-coloring of Emb(**A**, **D**), we say that γ is syndetic if each γ_i is syndetic.

With **D**, \mathcal{D} as above and $\mathbf{A} \in \mathcal{D}$, we say that $S \subseteq \text{Emb}(\mathbf{A}, \mathbf{D})$ is *syndetic* if $\text{Emb}(\mathbf{A}, \mathbf{D}) \setminus S$ is not thick.

If γ is a full k-coloring of Emb(**A**, **D**), we say that γ is syndetic if each γ_i is syndetic.

Proposition

With **D**, \mathcal{D} , and **A** as above, then **A** has Ramsey degree $t \ge k$ (t possibly infinite) iff there is a syndetic k-coloring of Emb(**A**, **D**).

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $\mathbf{A}, \mathbf{B} \in \mathcal{D}$ with $f \in \text{Emb}(\mathbf{A}, \mathbf{B})$. We define $\hat{f} : \text{Emb}(\mathbf{B}, \mathbf{D}) \to \text{Emb}(\mathbf{A}, \mathbf{D})$ via $\hat{f}(x) = x \circ f$.

/□ ▶ < 글 ▶ < 글

Let $\mathbf{A}, \mathbf{B} \in \mathcal{D}$ with $f \in \text{Emb}(\mathbf{A}, \mathbf{B})$. We define $\hat{f} : \text{Emb}(\mathbf{B}, \mathbf{D}) \to \text{Emb}(\mathbf{A}, \mathbf{D})$ via $\hat{f}(x) = x \circ f$.

We often consider these "dual" maps when dealing with a Fraïssé structure **K** with age \mathcal{K} . Notice that **K** is a Fraïssé structure iff every such \hat{f} is surjective.

Using the amalgamation property, we obtain the following:

Let $\mathbf{A}, \mathbf{B} \in \mathcal{D}$ with $f \in \text{Emb}(\mathbf{A}, \mathbf{B})$. We define $\hat{f} : \text{Emb}(\mathbf{B}, \mathbf{D}) \to \text{Emb}(\mathbf{A}, \mathbf{D})$ via $\hat{f}(x) = x \circ f$.

We often consider these "dual" maps when dealing with a Fraïssé structure **K** with age \mathcal{K} . Notice that **K** is a Fraïssé structure iff every such \hat{f} is surjective.

Using the amalgamation property, we obtain the following:

Proposition

Let \mathbf{K}, \mathcal{K} be as above, and fix $\mathbf{A} \leq \mathbf{B} \in \mathcal{K}$ and $f \in \text{Emb}(\mathbf{A}, \mathbf{B})$. Then $X \subseteq \text{Emb}(\mathbf{A}, \mathbf{K})$ is thick (resp. syndetic) iff $\hat{f}^{-1}(X) \subseteq \text{Emb}(\mathbf{B}, \mathbf{K})$ is thick (resp. syndetic).

伺 ト イ ヨ ト イ ヨ ト

This has a useful corollary:

▲□ ▶ ▲ □ ▶ ▲ □

This has a useful corollary:

Corollary

Let $\mathbf{K}, \mathbf{K}, \mathbf{A} \leq \mathbf{B}$ be as above. Then if **B** has Ramsey degree k, then **A** has Ramsey degree $t \leq k$. In particular, if **B** is a Ramsey object, then so is **A**.

/□ ▶ < 글 ▶ < 글

This has a useful corollary:

Corollary

Let $\mathbf{K}, \mathbf{K}, \mathbf{A} \leq \mathbf{B}$ be as above. Then if **B** has Ramsey degree k, then **A** has Ramsey degree $t \leq k$. In particular, if **B** is a Ramsey object, then so is **A**.

This is not in general true for the "substructure" version of the Ramsey property.

白 ト イ ヨ ト イ ヨ

The next item we need to tackle is to provide an explicit construction of the greatest ambit. If *G* is a topological group, a *G*-ambit is a *G*-flow *X* and a distinguished point $x_0 \in X$ with dense orbit.

- - E - - E

The next item we need to tackle is to provide an explicit construction of the greatest ambit. If *G* is a topological group, a *G*-ambit is a *G*-flow *X* and a distinguished point $x_0 \in X$ with dense orbit.

If (X, x_0) and (Y, y_0) are *G*-ambits, then $f : X \to Y$ is a *map of G*-ambits if *f* is a *G*-map sending x_0 to y_0 . There is at most one map of ambits from (X, x_0) to (Y, y_0) ; if there is one, we write $(X, x_0) \ge (Y, y_0)$.

The next item we need to tackle is to provide an explicit construction of the greatest ambit. If G is a topological group, a G-ambit is a G-flow X and a distinguished point $x_0 \in X$ with dense orbit.

If (X, x_0) and (Y, y_0) are *G*-ambits, then $f : X \to Y$ is a *map of G*-ambits if *f* is a *G*-map sending x_0 to y_0 . There is at most one map of ambits from (X, x_0) to (Y, y_0) ; if there is one, we write $(X, x_0) \ge (Y, y_0)$.

It is a fact that every topological group G admits up to isomorphism a unique greatest ambit (S(G), 1); any minimal subflow of S(G) is universal, hence isomorphic to M(G).

From now on, we fix once and for all a Fraïssé structure **K** with age \mathcal{K} . We also set $G = \operatorname{Aut}(\mathbf{K})$. Fix finite substructures $\mathbf{A}_1 \subseteq \mathbf{A}_2 \subseteq \cdots$ with $\mathbf{K} = \bigcup_n \mathbf{A}_n$. Write $H_n = \operatorname{Emb}(\mathbf{A}_n, \mathbf{K})$.

(同) (ヨ) (ヨ)

From now on, we fix once and for all a Fraïssé structure **K** with age \mathcal{K} . We also set $G = \operatorname{Aut}(\mathbf{K})$. Fix finite substructures $\mathbf{A}_1 \subseteq \mathbf{A}_2 \subseteq \cdots$ with $\mathbf{K} = \bigcup_n \mathbf{A}_n$. Write $H_n = \operatorname{Emb}(\mathbf{A}_n, \mathbf{K})$.

For $m \leq n$, let $i_m^n : \mathbf{A}_m \hookrightarrow \mathbf{A}_n$ be the inclusion map. This gives rise to a surjective dual map $\hat{\imath}_m^n : H_n \to H_m$. Note that if $m \leq n \leq N$, then $\hat{\imath}_n^N = \hat{\imath}_m^n \circ \hat{\imath}_n^N$.

伺い イラト イラト

From now on, we fix once and for all a Fraïssé structure **K** with age \mathcal{K} . We also set $G = \operatorname{Aut}(\mathbf{K})$. Fix finite substructures $\mathbf{A}_1 \subseteq \mathbf{A}_2 \subseteq \cdots$ with $\mathbf{K} = \bigcup_n \mathbf{A}_n$. Write $H_n = \operatorname{Emb}(\mathbf{A}_n, \mathbf{K})$.

For $m \leq n$, let $i_m^n : \mathbf{A}_m \hookrightarrow \mathbf{A}_n$ be the inclusion map. This gives rise to a surjective dual map $\hat{\imath}_m^n : H_n \to H_m$. Note that if $m \leq n \leq N$, then $\hat{\imath}_n^N = \hat{\imath}_m^n \circ \hat{\imath}_n^N$.

Form βH_n , the space of all ultrafilters on H_n . Each $\hat{\imath}_m^n$ extends to a continuous surjective $\tilde{\imath}_m^n : \beta H_n \to \beta H_m$. If $p \in \beta H_n$ and $S \subseteq H_m$, then $S \in \tilde{\imath}_m^n$ iff $(\hat{\imath}_m^n)^{-1}(S) \in p$.

伺下 イヨト イヨト

From now on, we fix once and for all a Fraïssé structure **K** with age \mathcal{K} . We also set $G = \operatorname{Aut}(\mathbf{K})$. Fix finite substructures $\mathbf{A}_1 \subseteq \mathbf{A}_2 \subseteq \cdots$ with $\mathbf{K} = \bigcup_n \mathbf{A}_n$. Write $H_n = \operatorname{Emb}(\mathbf{A}_n, \mathbf{K})$.

For $m \leq n$, let $i_m^n : \mathbf{A}_m \hookrightarrow \mathbf{A}_n$ be the inclusion map. This gives rise to a surjective dual map $\hat{\imath}_m^n : H_n \to H_m$. Note that if $m \leq n \leq N$, then $\hat{\imath}_n^N = \hat{\imath}_m^n \circ \hat{\imath}_n^N$.

Form βH_n , the space of all ultrafilters on H_n . Each $\hat{\imath}_m^n$ extends to a continuous surjective $\tilde{\imath}_m^n : \beta H_n \to \beta H_m$. If $p \in \beta H_n$ and $S \subseteq H_m$, then $S \in \tilde{\imath}_m^n$ iff $(\hat{\imath}_m^n)^{-1}(S) \in p$.

Now form the inverse limit $\lim_{m \to \infty} \beta H_n$ along the maps $\tilde{\imath}_m^n$. A basic open neighborhood of $\alpha \in \lim_{m \to \infty} \beta H_n$ is given by $\{\alpha' \in \lim_{m \to \infty} \beta H_n : S \in \alpha'(m)\}$ for some $m \in \mathbb{N}$ and $S \subseteq H_m$, $S \in \alpha(m)$.

伺下 イヨト イヨト

G acts on $\lim_{m \to \infty} \beta H_n$ as follows: if $\alpha \in \lim_{m \to \infty} \beta H_n$, $g \in G$, and $S \in H_m$, then $S \in \alpha g(m)$ iff for some $n \ge m$, $\{x \in H_n : x \circ g |_m \in S\} \in \alpha(n)$. This action is jointly continuous!

4 3 5 4 3 5

G acts on $\varprojlim \beta H_n$ as follows: if $\alpha \in \varprojlim \beta H_n$, $g \in G$, and $S \in H_m$, then $S \in \alpha g(m)$ iff for some $n \ge m$, $\{x \in H_n : x \circ g | m \in S\} \in \alpha(n)$. This action is jointly continuous!

Let $1 \in \lim_{n \to \infty} \beta H_n$ denote the element with each 1(m) principal on the inclusion embedding.

G acts on $\varprojlim \beta H_n$ as follows: if $\alpha \in \varprojlim \beta H_n$, $g \in G$, and $S \in H_m$, then $S \in \alpha g(m)$ iff for some $n \ge m$, $\{x \in H_n : x \circ g | m \in S\} \in \alpha(n)$. This action is jointly continuous!

Let $1 \in \lim_{n \to \infty} \beta H_n$ denote the element with each 1(m) principal on the inclusion embedding.

Theorem (Pestov)

 $(\underline{\lim} \beta H_n, 1)$ is the greatest G-ambit.

伺 ト く ヨ ト く ヨ ト

We can now give a new proof of the extreme amenability result from KPT. In fact, the proofs of many of the other results work by mimicking the methods in the proof I will present here, so this proof is in some ways representative.

We can now give a new proof of the extreme amenability result from KPT. In fact, the proofs of many of the other results work by mimicking the methods in the proof I will present here, so this proof is in some ways representative.

We say that $p \in \beta H_n$ is *thick* if every member of p is thick. Let $R_n \subseteq \beta H_n$ be the set of thick ultrafilters.

We can now give a new proof of the extreme amenability result from KPT. In fact, the proofs of many of the other results work by mimicking the methods in the proof I will present here, so this proof is in some ways representative.

We say that $p \in \beta H_n$ is *thick* if every member of p is thick. Let $R_n \subseteq \beta H_n$ be the set of thick ultrafilters.

Proposition

 $R_n \neq \emptyset$ iff \mathbf{A}_n is a Ramsey object.

We can now give a new proof of the extreme amenability result from KPT. In fact, the proofs of many of the other results work by mimicking the methods in the proof I will present here, so this proof is in some ways representative.

We say that $p \in \beta H_n$ is *thick* if every member of p is thick. Let $R_n \subseteq \beta H_n$ be the set of thick ultrafilters.

Proposition

 $R_n \neq \emptyset$ iff \mathbf{A}_n is a Ramsey object.

Proposition

If $m \leq n$, \mathbf{A}_n is a Ramsey object, and $p \in R_m$, then there is $q \in R_n$ with $\tilde{\imath}_m^n(q) = p$.

・ロト ・同ト ・ヨト ・ヨト

-

We see that \mathcal{K} has the Ramsey Property iff $\lim_{n \to \infty} R_n \neq \emptyset$.

伺 ト イヨ ト イヨ

We see that \mathcal{K} has the Ramsey Property iff $\lim_{n \to \infty} R_n \neq \emptyset$.

G is extremely amenable iff M(G) is a singleton iff S(G) contains a fixed point.

伺 ト イ ヨ ト イ ヨ ト

We see that \mathcal{K} has the Ramsey Property iff $\lim_{n \to \infty} R_n \neq \emptyset$.

G is extremely amenable iff M(G) is a singleton iff S(G) contains a fixed point.

Theorem

 $\alpha \in \varprojlim \beta H_n$ is a fixed point iff $\alpha \in \varprojlim R_n$. In particular, G is extremely amenable iff \mathcal{K} has the Ramsey Property.

伺 ト イ ヨ ト イ ヨ ト

Let $\alpha \in \lim_{m \to \infty} R_n$; suppose for sake of contradiction that there were some $g \in G$ with $\alpha g \neq \alpha$. In particular, there is $m \in \mathbb{N}$ and $S \subseteq H_m$, $S \in \alpha(m)$ with $S \notin \alpha g(m)$.

Image: A Image: A
Let $\alpha \in \varprojlim R_n$; suppose for sake of contradiction that there were some $g \in G$ with $\alpha g \neq \alpha$. In particular, there is $m \in \mathbb{N}$ and $S \subseteq H_m$, $S \in \alpha(m)$ with $S \notin \alpha g(m)$.

For some $n \ge m$, we have $T_1 := \{x \in H_n : x \circ i_m^n \in S\} \in \alpha(n)$ and $T_2 := \{x \in H_n : x \circ g | m \notin S\} \in \alpha(n)$. So $T_1 \cap T_2 \in \alpha(n)$.

Let $\alpha \in \varprojlim R_n$; suppose for sake of contradiction that there were some $g \in G$ with $\alpha g \neq \alpha$. In particular, there is $m \in \mathbb{N}$ and $S \subseteq H_m$, $S \in \alpha(m)$ with $S \notin \alpha g(m)$.

For some $n \ge m$, we have $T_1 := \{x \in H_n : x \circ i_m^n \in S\} \in \alpha(n)$ and $T_2 := \{x \in H_n : x \circ g | m \notin S\} \in \alpha(n)$. So $T_1 \cap T_2 \in \alpha(n)$.

Now for large $N \ge n$, find $h \in H_N$ with $h \circ \operatorname{Emb}(\mathbf{A}_n, \mathbf{A}_N) \subseteq T_1 \cap T_2$. Now consider $h \circ g|_n \circ i_m^n = h \circ i_n^N \circ g|_m$. The left side is in *S*, but the right side is not, a contradiction.

伺下 イヨト イヨト

□ ▶ < □ ▶ < □</p>

For $r \in \text{Emb}(\mathbf{A}_m, \mathbf{A}_n)$, set $T_r := \{f \in H_n : f \circ r \in S\}$. Then:

For $r \in \text{Emb}(\mathbf{A}_m, \mathbf{A}_n)$, set $T_r := \{f \in H_n : f \circ r \in S\}$. Then:

$$\bigcap_{r\in \operatorname{Emb}(\mathbf{A}_m,\mathbf{A}_n)} T_r = \emptyset$$

伺 ト く ヨ ト く ヨ ト

For $r \in \text{Emb}(\mathbf{A}_m, \mathbf{A}_n)$, set $T_r := \{f \in H_n : f \circ r \in S\}$. Then:

r

$$\bigcap_{\in \operatorname{Emb}(\mathsf{A}_m, \mathsf{A}_n)} T_r = \emptyset$$

Pick r with $T_r \notin \alpha(n)$. Then for any $g \in G$ with $g|_m = r$, then $\alpha g \neq \alpha$.

Introduction Overview A Few Details

Thanks!

Andy Zucker Carnegie Mellon University Permutation groups with metrizable universal minimal flow

э