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In this talk, we are interested in the dynamics of closed subgroups
of S∞, which we endow with the pointwise convergence topology.

Recall that the closed subgroups of S∞ are exactly the
automorphism groups of relational Fräıssé structures.

If K is a Fräıssé structure, then K = Age(K) is a Fräıssé class.
Conversely, if K is a Fräıssé class, there is up to isomorphism a
unique Fräıssé structure K = Flim(K) with Age(K) = K.
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If K is a Fräıssé structure, then K = Age(K) is a Fräıssé class.
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For G a topological group, a G -flow is a compact Hausdorff space
X along with a continuous right action τ : X × G → X .

A G -flow X is minimal if every orbit is dense, and X is universal if
for any minimal G -flow Y , there is a map of G -flows π : X → Y .

It is a fact that for any topological group G , there is up to G -flow
isomorphism a unique flow M(G ) which is minimal and universal.
M(G ) is called the universal minimal flow.
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For K a Fräıssé structure, there is a fascinating interplay between
the dynamical properties of G = Aut(K) and the combinatorics of
K = Age(K).

Let K be a class of finite structures, and let A ∈ K. We say that A
is a Ramsey object if for every B ∈ K with B ≥ A and every
k ∈ N, there is a C ∈ K with C ≥ B for which we have

C ↪→ (B)Ak

This says that for every coloring γ : Emb(A,C)→ [k], there is
f ∈ Emb(B,C) so that |γ(f ◦ Emb(A,B))| = 1.

We say that K has the Ramsey Property if each A ∈ K is a
Ramsey object. We can now state the following theorem.
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For K a Fräıssé structure, there is a fascinating interplay between
the dynamical properties of G = Aut(K) and the combinatorics of
K = Age(K).

Let K be a class of finite structures, and let A ∈ K. We say that A
is a Ramsey object if for every B ∈ K with B ≥ A and every
k ∈ N, there is a C ∈ K with C ≥ B for which we have

C ↪→ (B)Ak

This says that for every coloring γ : Emb(A,C)→ [k], there is
f ∈ Emb(B,C) so that |γ(f ◦ Emb(A,B))| = 1.

We say that K has the Ramsey Property if each A ∈ K is a
Ramsey object. We can now state the following theorem.

Andy Zucker Carnegie Mellon University Permutation groups with metrizable universal minimal flow



Introduction
Overview

A Few Details

Theorem (Kechris-Pestov-Todorčević)

Let K be a Fräıssé structure, K = Age(K), and G = Aut(K).
Then K has the Ramsey Property iff G is extremely amenable (i.e.
M(G ) is a singleton).

Problem

Is there a similar combinatorial characterization of when M(G ) is
metrizable?

Yes!
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Let K be a class of finite structures, and let A ∈ K. We say that A
has finite Ramsey degree if there is ` ∈ N

so that for every B ∈ K
with B ≥ A and every k ≥ `, there is C ∈ K with C ≥ B for which
we have

C ↪→ (B)Ak,`

This says that for every γ : Emb(A,C)→ [k], there is
f ∈ Emb(B,C) so that |γ(f ◦ Emb(A,B))| ≤ `.

Theorem (Z.)

Let K be a Fräıssé structure, K = Age(K), and G = Aut(K).
Then M(G ) is metrizable iff each A ∈ K has finite Ramsey degree.
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So if M(G ) is metrizable, what can it look like?
KPT-correspondence provides us with many examples:

For N the infinite set, M(Aut(N)) = M(S∞) is the space of
linear orderings of N.

For V∞ the infinite dimensional vector space over Fq,
M(Aut(V∞)) is the space of lex. orderings of V∞.

Sometimes we need more than just a linear order (Nguyen Van
Thé).

For the tournament S(2), M(Aut(S(2))) is the space of
admissible labelled 2-part partitions of S(2).

Andy Zucker Carnegie Mellon University Permutation groups with metrizable universal minimal flow



Introduction
Overview

A Few Details

So if M(G ) is metrizable, what can it look like?
KPT-correspondence provides us with many examples:

For N the infinite set, M(Aut(N)) = M(S∞) is the space of
linear orderings of N.

For V∞ the infinite dimensional vector space over Fq,
M(Aut(V∞)) is the space of lex. orderings of V∞.

Sometimes we need more than just a linear order (Nguyen Van
Thé).
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Thé).

For the tournament S(2), M(Aut(S(2))) is the space of
admissible labelled 2-part partitions of S(2).

Andy Zucker Carnegie Mellon University Permutation groups with metrizable universal minimal flow



Introduction
Overview

A Few Details

So if M(G ) is metrizable, what can it look like?
KPT-correspondence provides us with many examples:

For N the infinite set, M(Aut(N)) = M(S∞) is the space of
linear orderings of N.

For V∞ the infinite dimensional vector space over Fq,
M(Aut(V∞)) is the space of lex. orderings of V∞.

Sometimes we need more than just a linear order (Nguyen Van
Thé).
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The most general set-up for KPT-correspondence is as follows:

Let K be a Fräıssé class in a language L with limit K. Let K∗ be a
Fräıssé class in L∗ = L ∪ {Si : i ∈ I}, where the Si are countably
many new relation symbols of arity n(i), with limit K∗ and with the
property that K∗|L = K (i.e. K∗ is a reasonable expansion of K).

The topological space XK∗ is the collection of all structures of the
form 〈K, ~SK〉. If A ⊆ K, A ∈ K, and A∗ ∈ K∗ with A∗|L = A,
then this determines a basic open neighborhood of XK∗ via

N(A∗) = {~SK ∈ XK∗ : 〈A, ~SK|A〉 = A∗}
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XK∗ is compact iff for each A ∈ K, {A∗ ∈ K∗ : A∗|L = A} is finite
(i.e. K∗ is precompact). G = Aut(K) acts on XK∗ via the logic
action, i.e. for K′ ∈ XK∗ , g ∈ G , and each i ∈ I , we have

SK′·g
i (x1, ..., xn(i)) = SK′

i (g(x1), ..., g(xn(i))

We say that K∗ has the Expansion Property if for any A ∈ K,
there is B ∈ K with A ≤ B so that for any expansions A∗, B∗ of A
and B respectively, we have A∗ ≤ B∗.

Theorem (Kechris-Pestov-Todorčević, Nguyen Van Thé)

Let K be a Fräıssé structure, K = Age(K), and G = Aut(K). Let
K∗ be a reasonable, precompact Fräıssé expansion of K. Then
M(G ) ∼= XK∗ iff K∗ has the ExpP and the RP.
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M(G ) ∼= XK∗ iff K∗ has the ExpP and the RP.

Andy Zucker Carnegie Mellon University Permutation groups with metrizable universal minimal flow



Introduction
Overview

A Few Details

Problem

If G is a closed subgroup of S∞ with M(G ) metrizable, can M(G )
be described using a logic action as above?

Yes!

Theorem (Z.)

Let K be a Fräıssé structure, K = Age(K), and G = Aut(K).
Suppose M(G ) is metrizable. Then K admits a reasonable,
precompact Fräıssé expansion class K∗ with the Expansion
Property and the Ramsey Property.
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This has the nice consequence of solving the Generic Point
Problem for closed subgroups of S∞.

If G is a topological group and X is a minimal G -flow, then x ∈ X
is a generic point if x · G is comeager. G is said to have the
Generic Point Property if each minimal flow has a generic point.
This holds iff M(G ) has a generic point.

If G , K, and K are as always and K∗ is a reasonable Fräıssé
expansion of K with the Expansion Property, then the orbit of
K∗ = Flim(K∗) is generic.

Corollary (Z.)

Let G be a closed subgroup of S∞, and suppose M(G ) is
metrizable. Then G has the Generic Point Property.
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However, the Generic Point Problem as originally asked is still
open.

Problem (Angel, Kechris, Lyons)

Let G be a Polish group, and suppose M(G ) is metrizable. Then
does M(G ) have the Generic Point Property?
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The first ingredient in the proof is a different way of thinking
about the Ramsey Property.

Let D be a countably infinite relational structure with
D = Age(D), and let A ∈ D. We say T ⊆ Emb(A,D) is thick if
for every B ∈ D, there is f ∈ Emb(B,D) with
f ◦ Emb(A,B) ⊆ T .

We consider partial colorings γ : Emb(A,D)→ [k]; we say γ is full
if dom(γ) = Emb(A,D), and we say γ is large if dom(γ) is thick.
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Proposition

Suppose D is a countably infinite relational structure,
D = Age(D), and C is cofinal in D. Let A ∈ C and fix any k ≥ 2.
Then the following are equivalent:

1 A is a Ramsey object in C,

2 A is a Ramsey object in D,

3 For any full k-coloring γ of Emb(A,D), there is some γi
which is thick,

4 For any large k-coloring γ of Emb(A,D), there is some γi
which is thick.
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There is a similar characterization for Ramsey degrees:

Proposition

Suppose D is a countably infinite relational structure,
D = Age(D), and C is cofinal in D. Let A ∈ C and fix any r > k .
Then the following are equivalent:

1 A has Ramsey degree t ≤ k in C,

2 A has Ramsey degree t ≤ k in D,

3 Any full r -coloring of Emb(A,D) has some subset of k colors
which form a thick subset,

4 Any large r -coloring of Emb(A,D) has some subset of k
colors which form a thick subset.

Andy Zucker Carnegie Mellon University Permutation groups with metrizable universal minimal flow



Introduction
Overview

A Few Details

There is a similar characterization for Ramsey degrees:

Proposition

Suppose D is a countably infinite relational structure,
D = Age(D), and C is cofinal in D. Let A ∈ C and fix any r > k .
Then the following are equivalent:

1 A has Ramsey degree t ≤ k in C,

2 A has Ramsey degree t ≤ k in D,

3 Any full r -coloring of Emb(A,D) has some subset of k colors
which form a thick subset,

4 Any large r -coloring of Emb(A,D) has some subset of k
colors which form a thick subset.

Andy Zucker Carnegie Mellon University Permutation groups with metrizable universal minimal flow



Introduction
Overview

A Few Details

However, there is another characterization of Ramsey degrees we
will find useful.

With D, D as above and A ∈ D, we say that S ⊆ Emb(A,D) is
syndetic if Emb(A,D) \ S is not thick.

If γ is a full k-coloring of Emb(A,D), we say that γ is syndetic if
each γi is syndetic.

Proposition

With D, D, and A as above, then A has Ramsey degree t ≥ k (t
possibly infinite) iff there is a syndetic k-coloring of Emb(A,D).
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Let A,B ∈ D with f ∈ Emb(A,B). We define
f̂ : Emb(B,D)→ Emb(A,D) via f̂ (x) = x ◦ f .

We often consider these “dual” maps when dealing with a Fräıssé
structure K with age K. Notice that K is a Fräıssé structure iff
every such f̂ is surjective.

Using the amalgamation property, we obtain the following:

Proposition

Let K,K be as above, and fix A ≤ B ∈ K and f ∈ Emb(A,B).
Then X ⊆ Emb(A,K) is thick (resp. syndetic) iff
f̂ −1(X ) ⊆ Emb(B,K) is thick (resp. syndetic).
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This has a useful corollary:

Corollary

Let K,K,A ≤ B be as above. Then if B has Ramsey degree k ,
then A has Ramsey degree t ≤ k. In particular, if B is a
Ramsey object, then so is A.

This is not in general true for the “substructure” version of the
Ramsey property.
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The next item we need to tackle is to provide an explicit
construction of the greatest ambit. If G is a topological group, a
G -ambit is a G -flow X and a distinguished point x0 ∈ X with
dense orbit.

If (X , x0) and (Y , y0) are G -ambits, then f : X → Y is a map of
G -ambits if f is a G -map sending x0 to y0. There is at most one
map of ambits from (X , x0) to (Y , y0); if there is one, we write
(X , x0) ≥ (Y , y0).

It is a fact that every topological group G admits up to
isomorphism a unique greatest ambit (S(G ), 1); any minimal
subflow of S(G ) is universal, hence isomorphic to M(G ).
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From now on, we fix once and for all a Fräıssé structure K with
age K. We also set G = Aut(K). Fix finite substructures
A1 ⊆ A2 ⊆ · · · with K =

⋃
n An. Write Hn = Emb(An,K).

For m ≤ n, let inm : Am ↪→ An be the inclusion map. This gives rise
to a surjective dual map ı̂nm : Hn → Hm. Note that if m ≤ n ≤ N,
then ı̂Nn = ı̂nm ◦ ı̂Nn .

Form βHn, the space of all ultrafilters on Hn. Each ı̂nm extends to a
continuous surjective ı̃nm : βHn → βHm. If p ∈ βHn and S ⊆ Hm,
then S ∈ ı̃nm iff (̂ınm)−1(S) ∈ p.

Now form the inverse limit lim←−βHn along the maps ı̃nm. A basic
open neighborhood of α ∈ lim←−βHn is given by
{α′ ∈ lim←−βHn : S ∈ α′(m)} for some m ∈ N and S ⊆ Hm,
S ∈ α(m).

Andy Zucker Carnegie Mellon University Permutation groups with metrizable universal minimal flow



Introduction
Overview

A Few Details

From now on, we fix once and for all a Fräıssé structure K with
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G acts on lim←−βHn as follows: if α ∈ lim←−βHn, g ∈ G , and S ∈ Hm,
then S ∈ αg(m) iff for some n ≥ m,
{x ∈ Hn : x ◦ g |m ∈ S} ∈ α(n). This action is jointly continuous!

Let 1 ∈ lim←−βHn denote the element with each 1(m) principal on
the inclusion embedding.

Theorem (Pestov)

(lim←−βHn, 1) is the greatest G -ambit.

Andy Zucker Carnegie Mellon University Permutation groups with metrizable universal minimal flow



Introduction
Overview

A Few Details

G acts on lim←−βHn as follows: if α ∈ lim←−βHn, g ∈ G , and S ∈ Hm,
then S ∈ αg(m) iff for some n ≥ m,
{x ∈ Hn : x ◦ g |m ∈ S} ∈ α(n). This action is jointly continuous!

Let 1 ∈ lim←−βHn denote the element with each 1(m) principal on
the inclusion embedding.

Theorem (Pestov)

(lim←−βHn, 1) is the greatest G -ambit.

Andy Zucker Carnegie Mellon University Permutation groups with metrizable universal minimal flow



Introduction
Overview

A Few Details

G acts on lim←−βHn as follows: if α ∈ lim←−βHn, g ∈ G , and S ∈ Hm,
then S ∈ αg(m) iff for some n ≥ m,
{x ∈ Hn : x ◦ g |m ∈ S} ∈ α(n). This action is jointly continuous!

Let 1 ∈ lim←−βHn denote the element with each 1(m) principal on
the inclusion embedding.

Theorem (Pestov)

(lim←−βHn, 1) is the greatest G -ambit.

Andy Zucker Carnegie Mellon University Permutation groups with metrizable universal minimal flow



Introduction
Overview

A Few Details

We can now give a new proof of the extreme amenability result
from KPT. In fact, the proofs of many of the other results work by
mimicking the methods in the proof I will present here, so this
proof is in some ways representative.

We say that p ∈ βHn is thick if every member of p is thick. Let
Rn ⊆ βHn be the set of thick ultrafilters.

Proposition

Rn 6= ∅ iff An is a Ramsey object.

Proposition

If m ≤ n, An is a Ramsey object, and p ∈ Rm, then there is q ∈ Rn

with ı̃nm(q) = p.
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We see that K has the Ramsey Property iff lim←−Rn 6= ∅.

G is extremely amenable iff M(G ) is a singleton iff S(G ) contains
a fixed point.

Theorem

α ∈ lim←−βHn is a fixed point iff α ∈ lim←−Rn. In particular, G is
extremely amenable iff K has the Ramsey Property.
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Let α ∈ lim←−Rn; suppose for sake of contradiction that there were
some g ∈ G with αg 6= α. In particular, there is m ∈ N and
S ⊆ Hm, S ∈ α(m) with S 6∈ αg(m).

For some n ≥ m, we have T1 := {x ∈ Hn : x ◦ inm ∈ S} ∈ α(n) and
T2 := {x ∈ Hn : x ◦ g |m 6∈ S} ∈ α(n). So T1 ∩ T2 ∈ α(n).

Now for large N ≥ n, find h ∈ HN with
h ◦ Emb(An,AN) ⊆ T1 ∩ T2. Now consider
h ◦ g |n ◦ inm = h ◦ iNn ◦ g |m. The left side is in S , but the right side
is not, a contradiction.
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Suppose α(m) is not thick, with S ∈ α(m) not thick. Find n ≥ m
with f ◦ Emb(Am,An) 6⊆ S for every f ∈ Hn.

For r ∈ Emb(Am,An), set Tr := {f ∈ Hn : f ◦ r ∈ S}. Then:⋂
r∈Emb(Am,An)

Tr = ∅

Pick r with Tr 6∈ α(n). Then for any g ∈ G with g |m = r , then
αg 6= α.
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Thanks!
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